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Abstract  

Rationalization of  the interpretation of  the Dime equation for the electron lies beyond 
the conventional scope of quantum mechanic~ This difficulty motivates a revision of the 
system of quantum mechanics through which the indeterministic trait is eliminated from 
the system. 

1. Introduction 

Dirac's formulation of an equation for the electron in 1928 is often regarded 
as a superb example of synthetic work in quantum mechanics. Nevertheless, 
the concerned equation, which will be referred to as the Dirac equation from 
here on, seems to lie beyond the conventional scope of understanding of 
quantum mechanics. This observation is based on the following: 

(a) The Dirac equation is formulated as covariant under the Lorentz trans- 
formation. However, as will be discussed in some detail in Appendix A, the 
concepts of velocity and position of a particle defined in the Lorentz transforma- 
tion do not concur with the principle of uncertainty. 

(b) As is shown in a paper published earlier, (Koga, 1975) and referred to as 
paper I in the present paper, the principle of superposition does not hold with 
respect to states satisfying the Dirac equation. 

Since the principle of uncertainty and that of  superposition are fundamental 
and essential in the conventional system of quantum mechanics, the Dirac 
equation cannot be comprehended rationally within the system. How is this 
difficulty resolved? Does the difficulty motivate a general revision of  quantum 
mechanics by which the scope of quantum mechanics is broadened so that the 
Dirac equation is comprehended rationally? It is the purpose of the present 
paper to show that the revision is possible and that it enhances the significance 
of quantum mechanics. 

In Section 2, the derivation of the relativistic and quantum-mechanical 
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Liouvflle equation from the Dirac equation is demonstrated. Utilizing the 
Liou~lte equation, in Section 3, a particular solution of the Dirac equation is 
shown to represent a wavelet of which the motion is determined as analogous 
to the motion of a classical-mechanical material point considered in the special- 
relativistic sense. The principle of uncertainty and that of superposition are 
not relevant with respect to the motion of the wavelet. The extent of feasibility 
of the conventional system of quantum mechanics is discussed. 

It is of interest to note that the same revision of the conventional system of  
quantum mechanics is necessary also for rationalizing a treatment of a system 
consisting of many similar particles (Koga, 1972). 

2. The Liouville Equation Derived f rom the Dirac Equation 

In classical mechanics we often regard the Hamilton-Jacobi equation, the 
Liouville equation, and others as basic equations. It is obvious that those 
partial differential equations are not equivalent to Newton's equations of  
motion which are ordinary differential equations. Also, the Hamilton-Jacobi 
equation is not equivalent to the Liouville equation, and so on. It is only 
meant that if we choose a particular solution, e.g., of  the Liouville equation, 
then the solution is interpretable as equivalent to a solution of Newton's 
equations of motion. The situation is well known (Whittaker, 1965). We 
assume that the situation is the same with respect to the Dirac equation: 
Only if  we choose a particular solution of the Dirac equation obtained under 
certain restrictive conditions, may the solution represent the behaviour of the 
electron. The choice of the solution is guided not only by the correspondence 
principle but also by the following two conditions: (a) the interpretation of 
the state of an electron represented by the solution is compatible with the 
definition of the Lorentz transformation; (b) the interpretation is physically 
comprehensible without relying on the conventional theory of measurement 
which is based on the principle of indeterminacy and the principle of super- 
position. We note that the principle of superposition is not valid with respect 
to states satisfying the Dirac equation as is shown in paper I. 

We may write for the Dirac equation 

where 

Do~ = 0 (2.1) 

~I s = (XI/1, XI/2, XI/3, ~Is4) 

D O = ~(ifa a/at  - e a t )  + ~"" (ihc ~/ar + cA) - mc 2 (2.2) 

and (A, JAr) is a 4-vector potential. The other symbols are conventional as 
defined in Paper I. As noted in appendix B, (fla, i/~) are regarded as constituting 
a 4-vector. 

As is demonstrated in Paper I (Section IV), the Dirac equation can be 
reduced to a set of four equations of  which each contains only one of the four 
components of  g'. The reduction is done only by increasing the order of those 
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differential equations and by ignoring time- and space-derivatives of (A, iAt) 
of some higher orders. The complexity of the reduction increases as the com- 
plexity of(A, iAt) as functions of time and space coordinates increases. Since 
the purpose of the present paper is to demonstrate a general approach taken 
along the line set forth in the beginning, we shall treat the simplest case where 

(A, iAt) = 0 (2.3) 

On operating 

D1 = ~qh 3130 + ~a" (t~xc 3/ar) + mc 2 (2.4) 

from the left hand side of equation (2.1), we have 

D I D o X P  = (h 2 3 2 / 3 t  2 - h2c 2 3 2 / 3 r  2 + m 2 c 4 ) ~  = 0 (2.5) 

Equation (2.5) is covariant under the Lorentz transformation. If  we find a 
solution xI,(1) of equation (2.5), then 

~(o)  = D 1 ~ O )  (2.6)  

is a solution of the Dirac equation, because 

D1D o = DoD 1 

We write for the xP's in equation (2.5) 

v~O) = aj exp(iS]/h) (] = 1, 2, 3, 4) (2.7) 

where aj and S] are real functions of t and r. By substituting (2.7) in equation 
(2.5), we get the same equation for each of the ~ 's  as for the others. Hence, 
subscript ] may be omitted from here on. By separating the real and imaginary 
parts of the resultant equation, we get 

) { 3S ~2 (gradS)2 - - \  3(ct)2 Act - m 2 e 2 = O  (2.8) 

3 (a 2 33(~t))_div(a2gradS)= 0 (2.9) 
a(ct) 

We define Q by 

Q = h 2 [32a/~(ct) 2 - Aa]/a (2.10) 

for the sake of convenience. I ra  is a scalar, then Q is also a scalar under the 
Lorentz transformation. If S is a scalar also, equations (2.8) and (2.9) are 
covariant under the Lorentz transformation. If h = 0 in equation (2.8), the 
equation may be regarded as a relativistic version of the Hamilton-Jacobi 
equation in classical mechanics. In order to make the interpretation of 
equation (2.8) as analogous to the ordinary interpretation of the Hamilton- 
Jacobi equation in mechanics, we must select a proper set of solutions of 
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equations (2.8) and (2.9). For such solutions of  equations (2.8) and (2.9), we 
consider 

S = S(r, t, r o , to)  

a =  a(r, t, ro, to) (2.11) 

in which r o and t o are constants (footnote 1). We define 

p = grad S (2.12) 

E= -aS/b(ct  ) (2.13) 

We regard p as momentum,  a 3-vector variable independent of  r, and E as 
energy independent o f  t. Obviously it holds that 

dp/d(ct) + grad E = 0 (2.14) 

according to (2.12) and (2.13). On substituting (2.12) and (2.13) in (2.8) and 
(2.9), we have for (2.8) 

E 2 = p 2  + Q + m 2 c  2 (2.15) 

and for (2.9) 

[E(a/a(ct))r + p -  gradt] a 2 = 0 (2.16) 

where subscripts r and t are attached in order to emphasize the independence 
between r and t. Equation (2.15) may  be regarded as the equation of  energy. 

By means o f (2 .12)  and (2.13), we may eliminate those constants r o and t o 
from (2.11), obtaining 

S= S(r, t, p ,E)  

a = a(r, t, p, E) (2.17) 

Then, noting that E is independent of  t and p is independent o f  r, we have 

r = + d(c--T)" ap r~ p 

(grad a)t = (grad a)t, E + (grad E) aa/aE (2.18) 

where the derivatives in the left-hand sides are those contained in (2.16), and 
the derivatives in the right-hand sides are made with respect to a given in (2.17). 
We substitute (2.18) in (2.16). In the result, the following manipulation is 
made with the help o f  (2.14) and (2.15): 

dp a a b dp a 
E d(ct) bp + p "  grad E ~-~ = - E  (grad E ) .  ~pp - p .  d(ct) bE 

O_ l d Q  b 
= - (grad Q ) .  bp + 2 d(ct) bE 

If S is the principal function satisfying the Hamilton-Jacobi equation in classical 
mechanics, r o may be regarded as the value o f t  at the initial time t o. 
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Finally we have for (2.16) 

E _ .-=-= +p  • grad + _-- (grad Q) • a 2 =0  (2.19) 
aE 

where the subscripts attached to derivatives have been removed. 
When (dr, id(et)) is a 4-vector, (grad, 4a/a(ct)) is transformed also as a 

4-vector. Noting this, we see that equation (2.19) is covariant under [he Lorentz 
transformation. A question remains with respect to Q. According to (2.10), Q 
is a scalar. If we introduce (2.18) in (2.10) and regard (p, iE) as a 4-vector, 
however, the qualification of Q to be a scalar is obscured, because the indepen- 
dence between p and r and also the independence between E and t are not 
necessarily preserved under the Lorentz transformation. This difficulty may 
be explained as follows: As is discussed in Appendix B, the Dirac equation is 
only conditionally covariant under the Lorentz transformation. This fact 
suggests that the Dirac equation contains some description of the internal 
structure of the electron for which the Lorentz transformation is not relevant, 
and the investigation made in the next section suggests that Q bears the very 
description. 

Under conditions 
m2c 2 >(p2  +Q), E > 0  

and small quantities of higher orders being neglected, equations (2.15) and 
(2.19) yield respectively 

cE = me 2 + p2/(2m) + Q/(2m) (2.20) 

( 3 + 1 dQ O 1 (grad Q) 3 P ) • - - + - - ' g r a d  a 2 = 0  (2.21) 
3tt 2mc dt ~E 2m 3p rn 

If we eliminate mc 2 from the energy equation (2.20) and neglect a2a/a(ct) 2 
in Q given by (2.10), and further assume that dQMt is insignificant, then 
equations (2.20) and (2.21) are derivable from Schr6dinger's nonretativistic 
wave equation (Koga, 1972). 

3. Particular Solutions o f  the Dirac Equation and the Liouvilte Equation 

In Section 2, the Liouville equation was derived from equation (2.5) where 

Do'~ = 0 

is the original Dirac equation. The relation between a solution of equation (2.5) 
and the corresponding solution of the Dirac equation is given by (2.6). 

It is easily seen that equation (2.19) is satisfied by (footnote 2) 

a = exp (-• Irl) a(p) (3.1) 
trt 

2 Note that p6(p) = 0. 
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where 

Irl = (x 2 +y2  + 22)1/2, 6(p) = 6(px)g(py)i~(pz) 

6 denoting Dirac's 6-function, and we note that, according to (2.10) and (2.15), 

Q = - h 2Aa/a  = - h,2¢~ 2 = const. 

g 2 = m2c 2 _/).2K2 

By considering a coordinate system moving with velocity u relative to the 
original coordinate system, r and p in (3.1) are replaced respectively with 

r' = (r - ut)/(1 - u2/c2)  1/2 (3.2) 

and 

p '=  p - uE/c  (3.3) 

Then we have 

Q = [h2(b2/~(c t )  2 - A)a] /a  

= _h2K 2 

where • is the same constant as given in (3.1). Accordingly 

exp ( -K  [r' 1) 6(p') (3.4) 
a--  Ir'l 

is shown to satisfy equation (2.19). 
It might be of  interest to recall that for obtaining a wavelet by solving 

Schr6dinger's nonrelativistic equation, it was necessary to define velocity v by 
p = mv by invoking the principle of Galilean invariance (Koga, 1972). In the 
present case, it is necessary to define u by 

p = u E / c  

so that the priciple of Einsteinian invariance, i.e., of  the special theory of  
relativity, is maintained. See MNler (1952, Chapter III). 

By substituting the above in (2.15), we obtain 

or 

E 2 = m2c 2 _/~2K2 + u2E2/c  2 

E 2 = (m2c 2 -- h2K2)/(1 -- u2/c  2)  (3.5) 

If h, 2 = 0 in this relation, the relation is known with respect to a material point 
in the conventional special theory of  relativity. 

We now take for S 

S = - E c t  + p • r 

Then ~ which satisfies equation (2.5), i.e., ,ii(1) in (2.7), is given by 

~ j  (1) = Aja  exp ( iS /h  + iOj) (] = 1, 2, 3, 4) (3.6) 
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where 0 i and .4/are real numbers to be given arbitrarily. But there is no 
H~bert space in which if,(1) is a vector. The cause of the difficulty is twofold: 
first ,~0) has more than one component (Koga, 1975); secondly a contained 
in ~ 0 )  has singularity as is seen in (3.4). 

In order to obtain the solution of the Dirac equation, as corresponding to 
(3.6), we utilize relation (2.6) and obtain 

(fli 3 _~ 2) qff(a) (3.7) ~(o) = h ~ + ihe ~ a.  + mc 

where ~(1) is given by (3.6). The amplitude a of qt(a) is spherically symmetric 
with respect to r' in (3.4). But this condition does not hold for ,Iz(O); the field 
represented by ~(o) is anisotropic. The mode of the anisotropy varies as the 
representation of  spin matrices varies in the Dirac equation. The formation of 
a de Broglie wave in terms of ~(1) may be done in the same way as in the case 
of Schr6dinger's equation given earlier (Koga, 1972). 

6. Concluding Remarks  

Since the principle of superposition is not valid with respect to solutions of 
the Dirac equation for the electron, the conventional interpretation of  the 
equation made as based on the principle is not valid (Koga, 1975). 

A rational interpretation of  the concerned equation is obtained by consider- 
ing the equation as corresponding to the Hamilton-Jacobi equation in classical 
mechanics. According to this investigation, our knowledge of the motion of the 
electron is deterministic; the principle of uncertainty and also the principle of 
indeterminacy are not relevant. 

It is noted that this deterministic view of nature is also necessary fbr treating 
time-dependent processes taking place in a system consisting of many similar 
particles even in the nonrelatMstic sense (Koga, 1972). 

To sum up, the conventional formalism of quantum mechanics as based on 
the principle of uncertainty and that of superposition is to be feasible only for 
treating a system in particular cases in which the system may be represented by 
an ensemble in the non-relativistic sense. 

Appendix  A 

Definition o.f the Lorentz  Transformation 

In the definition of  the Lorentz transformation, the relative velocity between 
a pair of  coordinate systems must be considered in the kinematical sense, so 
that the velocity may specify the kinematical relation between the two coordi- 
nate systems. In quantum mechanics, the velocity operator v of a particle is 
defined formally by 

v = ~ = q/h)  (Hr - r//) = p/rn 



278 TOYOKI KOGA 

where p is the momentum operator anffHthe Hamiltonian (Dirac, 1967, 
section 69). The determination of velocity requires the determination of 
momentum. According to the principle of uncertainty, however, the deter- 
mination of momentum is made only by forsaking the determination of 
position. On the other hand, the concept of velocity in the kinematical sense 
necessary for the Lorentz transformation requires the determination of position. 

This situation is well known. See, for instance, Dirac (1967, p. 262). The 
situation gives rise to the following difficulty: in order to achieve the relativis- 
tic covariancy of a quantum-mechanical theory, we have to formulate the theory 
so as to embrace the definition of velocity which can be made only in the 
classical-mechanical and deterministic sense. 

Appendix B 

Covariancy of the Dirac Equation Under the Lorentz Transformation 

In Paper I, Section II, we observed that, if the anisotropy of the electron 
structure is embodied in the Dirac equation, it should be represented by the 
anisotropy of  the spin matrices. From this point of  view, we must regard 
(/3ct, iJ3) as a 4-vector and • as a set of four scalars in equation (2.2), in order 
to make the Dirac equation covariant under the Lorentz transformation. By 
transforming formally (J~, i/3), we suppose that ((/~)', i/~') is obtained for the 
components in the new coordinate system. Then a' is defined by 

~' = ~ ' ( ~ ) '  

Thus ~t' and/3' are shown to satisfy the same relations as known between ~t 
and/3. For instance, ax 2 = a~, 2 = a~ 2 = 1, etc. If  we regard the Dirac equation as 
a set of  four partial differential equations, however, those equations are not 
covariant under the concerned transformation. This situation is comprehen- 
sible: the anisotropy of the electron embodied in the Dirac equation should 
not rotate together with the coordinate system when the latter is rotated by us. 
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